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Abstract The multiexponential analysis problem of fitting kinetic models to time-
resolved spectra is often solved using gradient-based algorithms that treat the spectral
parameters as conditionally linear. We make a comparison of the two most-applied
such algorithms, alternating least squares and variable projection. A numerical study
examines computational efficiency and linear approximation standard error estimates.
A new derivation of the Fisher information matrix under the full Golub-Pereyra gra-
dient allows a numerical comparison of parameter precision under variable projec-
tion variants. Under the criteria of efficiency, quality of standard error estimates and
parameter precision, we conclude that the Kaufman variable projection technique
performs well, while techniques based on alternating least squares have significant
disadvantages for application in the problem domain.

Keywords Separable nonlinear models · Time-resolved spectra · Variable projec-
tion · Alternating least squares · Fisher information

1 Introduction

State-of-the-art dynamical experiments in photophysics result in huge datasets of
time-resolved spectra. Such data represent a spectral property associated with a photo-
physical system at m times and n wavelengths by an m × n matrix �. For typical
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experiments, m and n are of order 103. With such an overwhelming amount of data
a model-based analysis is mandatory for interactive validation of hypotheses regard-
ing physicochemical mechanisms of the underlying system. The basic kinetic model
applied to � is

� = CET + � =
ncomp∑

l=1

cle
T
l + � =

ncomp∑

l=1

exp(−φlt)e
T
l + � (1)

where column l of C represents the concentration in time of a spectrally distinct
subsystem contributing a component to �, column l of E describes the spectrum of
that subsystem, ncomp is the number of contributing components, and � is a residual
matrix with spherical Gaussian distribution. Elements of �, C, and E are in R, but
no other constraints are enforced in the general case. Estimation of parameters φ

under least-squares criteria is thus a multiexponential analysis problem, the difficulty
of which is well-known [3,28]. Problems in multiexponential analysis are ubiquitous in
physics applications in which data is modelled by the solution of first-order differential
equations, as Istratov and Vyvenko review [18].

The estimation problem associated with estimating φ in Model (1) under least-
squares criteria is

Minimize ‖ vec(C(φ)ET − �) ‖2, (2)

which is an instance of the unconstrained optimization problem Minimize γ (x), x ∈ R
n

in which the variables separate into x = (y, z) with y ∈ R
p, z ∈ R

q, p + q = n, and the
subproblem

Minimize γ (y, z), (3)

is easy to solve for fixed z, and, more generally, of the bilinear programming prob-
lem [1,9,17]. Separating the parameters reduces the n-dimensional unconstrained
optimization problem to the q-dimensional unconstrained problem

Minimize γ (y(z), z), (4)

where y(z) denotes a solution of (3). In the considered application y(z) is solved as
the solution of a linear-least squares problem for fixed z, there are hundreds more
conditionally linear parameters y than intrinsically nonlinear parameters z, and lin-
ear approximation standard error estimates about estimates for z are desired for
model validation. These structural features of the problem and the requirement for
standard error estimates make gradient-based algorithms that exploit the conditional
linearity of Problem (2) attractive, though a variety of other algorithms, e.g., Branch
and Cut methods [2], evolutionary search [35], or Prony-based methods [22] are also
applicable. The development of gradient-based methods for the separable Problem
(4) is chronicled in, e.g., [13,23,29]. The gradient-based algorithms most commonly
applied to Problem (2) are based on alternating least squares [6,7,10,19] or variable
projection [14,21,33]. These techniques have been numerically compared in [4] for a
single nonlinear parameter, and in [11] for small datasets (<70 datapoints). Theoret-
ical comparisons of gradient-based methods for separable problems have been made
in [4,8,20,23,27]. In this paper we extend the literature comparing gradient-based
methods for separable nonlinear optimization problems to Problem (2), the central
estimation problem in fitting parametric kinetic models to time-resolved spectra.

A comparison of techniques in the photophysical modelling application domain
is desirable due to the difficulty of Problem (2), which is not identifiable [34] and



J Glob Optim (2007) 38:201–213 203

sensitive to starting values [24,30]. Convergence issues due to ill-conditioning when
two or more decay rate parameters φl are close are well-known [22,25], and are par-
tially dependent on the choice of gradient. The stochastic noise term contained in mea-
sured � introduces a further source of difficulty by complicating the sum-of-square
error parameter surface of φ with local minima. The performance of alternating least
squares and variable projection variants is studied here in such a way as to expose the
vulnerabilities and strengths of the algorithms in the face of these difficulties as they
occur in typical photophysical model fitting problems. To the best of our knowledge
this is the first such comparison in the literature.

Alternating least squares and variable projection variants are presented in terms
of their gradients in Sect. 2. The ability of the algorithms to deal with degeneracy
in the case of similar decay rate parameters φl, φj is studied theoretically in Sect. 3
by comparison of Fisher information matrices (FIM) associated with parameter esti-
mates under variable projection variants. This Sect. contains a new derivation of the
FIM under the full Golub-Pereyra variable projection functional. Sect. 4 discusses
the simulation of realistic datasets of time-resolved spectra to be used in numerical
comparison. A numerical study is made in Sect. 5 to highlight convergence issues
and sensitivity to starting values. Section 5.2 contains a numerical comparison of var-
iable projection techniques using FIMs as rate constants vary in such a way to make
Problem (2) more nearly-degenerate.

2 Gradient-based algorithms for separable nonlinear least squares

Gradient-based algorithms for solution of Problem (2) estimate E as ÊT(φ) = C+�

where + is the Moore-Penrose pseudoinverse, so that Problem (2) may be written as

Minimize ‖ (I − C(φ)C+(φ))� ‖2 . (5)

The gradient-based techniques most often applied to Problem (5) are based on either
the alternating least squares (ALS) or variable projection functionals. ALS was intro-
duced by Wold [36] as NIPALS and has a simple functional form which neglects the
derivative of the pseudoinverse C+. The variable projection gradient (GP) makes use
of the derivative of C+ due to Golub and Pereyra [15,16]. The approximation to the
full GP functional (KAUF) introduced by Kaufman [20] is more efficient to compute
and for simple models has been shown to return nearly as precise parameter estimates
as the full functional [4,11].

In order to make clear the core differences between algorithms, we present ALS,
KAUF and GP and a finite difference approximation of (I − C(φ)C+(φ))� in terms
of the gradient in φ-space, using the notation of [4]. The derivative of C with respect
to the nonlinear parameters is denoted Cφ = dC

dφT . Applying the QR decomposition,

C = QR = [Q1 Q2][R11 0]T , where Q is m × m and orthogonal and R is m × ncomp.
Assuming C is of full column rank, C+ = R−1

11 QT
1 . Then, where “convergence” is some

appropriate stopping criterion and the iteration subscript s is suppressed, we have

Algorithms ALS, KAUF, GP, NUM:
1. Choose starting φ approximately
2. For s := 1, 2 . . . until convergence do
Determine the gradient in φ-space according to:
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NUM := finite difference approximation of d(I−CC+)
dφ

�

GP := −Q2QT
2 CφC+� − Q1R−T

11 CT
φ Q2QT

2 �

KAUF := −Q2QT
2 CφC+�

ALS := −CφC+�

φs+1 := step(φs, gradient, . . .)

In the presentation of the algorithms above, step refers to the method of determin-
ing the step-size, which is not further discussed. This allows for a clear description and
separates the question of which step method is optimal from the differences between
the gradients.

For a numerical comparison, we consider two varieties of ALS differing in the step
method. The first (ALS-GN) makes a Gauss-Newton step given the ALS gradient.
The second (ALS-LS) makes a Gauss-Newton step augmented by a line search until
the sum-square error (SSE) is seen to increase. KAUF, GP, and NUM are considered
under a Gauss-Newton step. Simulation studies indicate that for the numerical prob-
lems considered in Sect. 5, replacement of the Gauss-Newton step with a Levenberg-
Marquardt step does not appreciably alter the performance for any of the algorithms
considered.

Implementation is straightforward using library subroutines for QR decomposi-
tion, finite difference derivatives, and nonlinear least squares. Such subroutines are
found, for instance, in the base and stats packages of the R language and environ-
ment for statistical computing [26], where we base the implementation for numerical
comparison. An analytical expression for Cφ is used for models based on a sum-of-
exponentials. Under more complicated models for C a finite difference approximation
of Cφ is often desirable.

We now summarize some prior results comparing subsets of the algorithms under
consideration. Ruhe and Wedin [27] have shown that for starting φ close to the solu-
tion, the asymptotic convergence rates of KAUF and GP are superlinear whenever
application of Gauss-Newton to the unseparated parameter set (φ + E) has a super-
linear rate of convergence, and that ALS always has only a linear rate of convergence.
Bates and Lindstrom [4] demonstrated that for a simple model having a single non-
linear parameter the performance of KAUF and GP was similar. Gay and Kaufman
[11] also performed a comparison of KAUF and GP on several small datasets, (<70
data points), demonstrating that the time to compute KAUF was about 25% less than
the time to compute GP for the range of problems considered.

3 Parameter precision under variable projection variants

The precision of nonlinear parameter estimates φ is a means of evaluating the perfor-
mance of algorithms on Problem (2) of special interest on nearly-degenerate problems,
i.e., when optimal estimates for two or more nonlinear parameters are close, so that
the data are well-approximated by a lower-order sum-of-exponentials. Sect. 4.1 fur-
ther elaborates the importance of parameter precision in solving nearly-degenerate
problems.

A means of quantifying the precision of a vector of parameter estimates is found
in the FIM. The structure of the FIM provides insight into contributions to parameter
precision, and FIMs may be numerically compared under different gradients, as in
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Sect. 5.2. The resolution limit of exponential analysis has been oft-studied in terms
of FIMs and other information-theoretic metrics, as discussed in [18]. Badu and
Bresler [3] have studied the connection between the stochastic stability of nonlin-
ear least squares problems and the FIM with attention to separable problems such as
Problem (2).

Definition 3.1 Where J is the gradient of the residual function with respect to the
nonlinear parameters φ and the model error σ 2 is determined as σ 2 = SSE(φ)/df ,
with df the degrees of freedom of the model, and where, as throughout, the noise �

is assumed to have spherical Gaussian distribution, the FIM M may be defined as

M = σ−2vec(J)Tvec(J) = σ−2M̃. (6)

When M is positive definite the covariance estimate of any unbiased estimator of
parameter vector φ is bounded below by the inverse of M (the Cramér-Rao Bound),
so that

Cov[φ̂] ≥ M−1. (7)

We will now give functions for M̃ under the variable projection algorithms KAUF and
GP.

Proposition 3.1
M̃KAUF = vec(Cφ)T(ETE ⊗ P)vec(Cφ). (8)

Proof JKAUF is given as

JKAUF = Q2QT
2 CφC+� = PCφET , (9)

where P = Q2QT
2 .

Writing JKAUF in vectorized form,

vec(JKAUF) = vec(PCφET) (10)

= (E ⊗ P)vec(Cφ). (11)

Then from [32],

M̃KAUF = vec(JKAUF)Tvec(JKAUF) (12)

= ((E ⊗ P)vec(Cφ))T((E ⊗ P)vec(Cφ)) (13)

= vec(Cφ)T(ETE ⊗ P)vec(Cφ). (14)

It is often convenient to consider M̃ by entry M̃ij. This is

(M̃KAUF)ij = vec(Cφi)
TETE ⊗ Pvec(Cφj), (15)

where vec(Cφi) is the vector representation of dC
dφi

.

For a two column matrix C in which cl = exp(φl), vec(Cφ1) =
(

g1
0

)
and vec(Cφ2) =

(
0
g2

)
, where gi = −texp(−φit). For this case the expression for M̃KAUF simplifies to

(M̃KAUF)ij = εT
i εjgT

i Pgj. (16)
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Proposition 3.2 Writing M̃GP per entry,

(M̃GP)ij = (M̃KAUF)ij + vec(CT
φi

)T(P�)(P�)T ⊗ C+(C+)Tvec(CT
φj

). (17)

Proof The gradient JGP of the residuals with respect to the nonlinear parameters
contains the extra term Q1R−T

11 CT
φ Q2QT

2 � as compared to JKAUF, so that

JGP = Q2QT
2 CφC+� + Q1R−T

11 CT
φ Q2QT

2 � (18)

= JKAUF + (C+)TCT
φ P�. (19)

Vectorizing JGP,

vec(JGP) = (E ⊗ P)vec(Cφ) + (P�)T ⊗ (C+)Tvec(CT
φ ), (20)

and vectorizing JT
GP,

vec(JGP)T = vec(Cφ)T(ET ⊗ P) + vec(CT
φ )T(P�) ⊗ C+. (21)

Then, writing M̃GP per entry,

(M̃GP)ij = (M̃KAUF)ij + vec(CT
φi

)T(P�)(P�)T ⊗ C+(C+)Tvec(CT
φj

). (22)

where we have used the orthogonality of JKAUF and (C+)TCφP�.
For a two column matrix C in which cl = exp(φl), the expression for M̃GP simplifies

to
(M̃GP)ij = (M̃KAUF)ij + gT

i P�(P�)Tgj(RT
11R11)

−1
ij . (23)

The extra term in M̃GP as compared to M̃KAUF is associated with the more accurate
representation of the Hessian of Problem (2) under JGP as compared to under JKAUF.
The extent to which this extra term is of benefit in solving Problem (2) in practice is
evaluated numerically in Sect. 5.2.

4 Data for a simulation study

For a simulation study we used a model giving rise to a multiexponential analysis
problem involving two exponentials with rate constant parameters φ = {k1, k2}. The
generative model for the C matrix of concentrations is then cl = exp(−klt), where t is
a vector of times and ncomp = 2 (Fig. 1).

The spectra E associated with the exponential decays are modelled as a mixture of
Gaussians in the wavenumber ν̄ (reciprocal of wavelength) domain, so that

el(µν̄ , �ν̄) = alν̄
5 exp(−ln(2)(2(ν̄ − µν̄)/�ν̄)

2), (24)

where el is column l of E describing the lth spectrum, with parameters µν̄ , �ν̄ , and al,
for the location, full width at half maximum (FWHM), and amplitude, respectively.
This underlying model for E is chosen because it is a simple model capable of rep-
resenting real spectra in practice [32], and because the use of Gaussians to represent
spectral shapes is wide-spread, (see, e.g., [33] and references therein). The algorithms
presented in Sect. 2 to solve Problem (2) treat the entries of E as conditionally linear
parameters so that the spectral shapes are recoverable without specification of an
underlying parametric model. This is often desirable because the set of parameters
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Fig. 1 Contour map of typical simulated data � used in computational study. Model fitting will
resolve the two contributing components

Table 1 Rate constants, spectral parameters, and amplitudes for simulated �

component k µν̄ σν̄ a

1 0.5 22 9 1
2 0.6 18 8 2

necessary to adequately describe the spectra of photophysical systems of interest is
often large and more difficult to determine in comparison to the small and relatively
simple parameterization φ of the concentrations C.

Given these models for C and E, data was generated with the parameter values in
Table 1. Values for kinetic parameters k1 and k2 are similar and the spectral param-
eters represent overlapping spectral shapes. n = 51 time points equidistant in the
interval 0–2 ns and m = 51 wavelengths equidistant in the interval 350–550 nm. These
parameter values are inspired by real data ([32] and references cited therein).

4.1 Degeneracy and multimodality due to noise

Measured time-resolved spectra � always contain stochastic noise. The presence of
noise may introduce stationary points where dJ(φ)

dφ
= 0 at φ distinct from those values

underlying the deterministic model, so that the algorithms presented in Sect. 2 are
sensitive to starting values. This numerical identifiability problem is well-known in
kinetic modeling [12], (as is the problem of structural, i.e., deterministic model-based,
lack of identifiability). In the case of convergence to a local minimum introduced
by noise, estimates for kinetic parameters and spectra are often implausible from
physicochemical first principles. Uninterpretable parameter estimates typically allow
spurious solutions to be recognized and discarded.

In fitting Model (1) to measured time-resolved spectra the signal-to-noise ratio may
be such that degeneracy is a significant issue. That is, optimal estimates for two or more
rate constant parameters in the vector of nonlinear parameters φ may be close enough
that noise disrupts the SSE surface in such a way that the globally optimal solution
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Fig. 2 The dataset described in Sect. 4 with a stochastic noise term with Gaussian distribution and zero
mean having width � equal to 7×10−3 the maximum of the data. The parameter values φ = {0.5, 0.6}
or symmetrically φ = {0.6, 0.5} (closed circles) underly the deterministic part of the data, and would
be the globally optimal parameter estimates save for the effect of noise, which makes the lower order
solution φ = {0.55, 0.55} (crossed circle) globally optimal

is a sum of less than ncomp exponentials, as reviewed in [31]. Then the least-squares
solution yields estimates with k1 = k2 for {k1, k2} ∈ φ. In nearly-degenerate cases
the least squares solution is with k1 ≈ k2, and the parameters may be resolved if the
precision with which they are estimated is sufficiently high, as is studied numerically
under the KAUF and GP algorithms in Sect. 5.2. For the simulated dataset described
in Sect. 4 degeneracy is probable for noise with width of about 7 × 10−3 the maximum
of the data. The SSE surface of parameters φ for a noise realization that results in
near-degeneracy is shown in Fig. 2.

5 Computational results

Model (1) was fit to the data described in Sect. 4 with a stochastic noise term with
Gaussian distribution and zero mean having width � equal to 3 × 10−3 the maximum
of the data using each of the algorithms described in Sect. 2. The convergence criterion
was reduction of sum square error (SSE) ||vec(� − CET)||2 by a factor of less than
1/210 between iterations. Estimated spectra found as conditionally linear parameters
under KAUF, GP, ALS-LS or NUM well-represent the spectra used in generating the
simulated data, as shown in Fig. 3.

To visualize the progress of the algorithms per iteration, the SSE as rate constants
k1, k2 vary is evaluated, with the result being the surface shown in Fig. 4. Figure 4 also

Fig. 3 Estimated spectra
(dashed lines) as found with
KAUF, GP or NUM by fitting
the simulated dataset depicted
in Fig. 1 with the
two-component kinetic model
described in Sect. 5. Spectra
used to generate the
deterministic part of the
dataset (solid lines) are shown
for comparison
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Fig. 4 Contour map of the
sum square of residuals
||vec(� − CET )||2 as rate
constants k1, k2 vary, at a
relatively large (a) and
relatively small (b) scale. The
progress of ALS-GN (unfilled
triangle), ALS-LS (square),
KAUF (filled triangle), and
GP/NUM (filled and unfilled
circles) is depicted from
starting values
k1 = 0.1, k2 = 1; rate constant
estimates are marked with the
symbol associated with each
algorithm after each iteration.
Spacing between contour lines
is not uniform
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shows the values found by each algorithm under consideration for each of 50 iterations
from the starting values k1 = 0.1, k2 = 1. KAUF, GP, ALS-LS and NUM converge on
the same (globally optimal) solution in 4 iterations. ALS-GN is not generally conver-
gent in many hundreds of iterations, and from this case study and others we conclude
that the Gauss-Newton step coupled with the ALS-gradient is not sufficient for the
solution of typical estimation problems in this domain.

Performance from a range of starting values and on variants of the dataset under
different noise realizations was examined. For cases in which globally optimal param-
eter values are located at the end of a valley with respect to the starting values, the
performance of ALS-LS is very much hampered in terms of iterations required to
convergence in comparison to KAUF, GP, and NUM. A plot of the SSE surface (as
in Fig. 4) in this case shows that ALS-LS follows a zig-zagging path between the walls
of the valley toward a globally optimal solution.

We conclude that the ALS gradient coupled with a line search and both variable
projection methods KAUF and GP solve this problem for the considered data real-
izations. The KAUF algorithm typically requires the same number of iterations as the
GP algorithm. ALS with line search converges in a greater or equal number of itera-
tions as compared to KAUF and GP. The iterations required for ALS-LS are greater
than for KAUF and GP when the globally optimal parameter values are at the end
of a valley in SSE with respect to starting parameter estimates. Therefore in terms
of iterations to convergence and sensitivity of computational efficiency to starting
values, the variable projection-based algorithms demonstrate the best performance.
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5.1 Standard error estimates

In order to examine the properties of linear approximation standard error estimates
as returned by the algorithms under consideration, 1000 realizations of the dataset
described in Sect. 4 were simulated. For each realization, the deviation(k) = k̂ − k,
where k̂ is the estimated rate constant value, and k is the value used in simulation, the
linear approximation standard error (σ̂k̂), derived from cov(φ̂) = ς̂2(JTJ)−1, where
ς̂2 denotes the estimated variance and J is the gradient evaluated at φ̂, and the ratio of
these two calculations, the studentized parameter deviation [5,28,32], was calculated.
Table 2 reports root mean square (RMS) results.

At the level of precision collated in Table 2, results for NUM, KAUF and GP are
identical. NUM and GP only differ from KAUF in the 3rd decimal place of RMS
(deviation/σ̂k̂), and from each other in the 6th.

RMS (deviation/σ̂k̂) is expected to be 1 in linear models, and hence the degree to
which this ratio approximates 1 can be used as a measure of the applicability of the
linear approximation standard error returned by the respective algorithms. Under the
ALS gradient, σ̂k̂ is much too small, and not useful as a measure of confidence in
parameter value estimates.

Likelihood-based confidence regions may be constructed around parameter esti-
mates based on the likelihood ratio between the sum square of residuals S(φ̂) =
||vec(�−CET)||2 at the solution and at values S(φ) around the solution as φ = {k1, k2}
is varied. The confidence level 1 − α is determined as

1 − α = F

(
P, N − P, (N − P)/P

S(φ) − S(φ̂)

S(φ̂)

)
(25)

where F is the cumulative F-distribution, P = ncomp = 2, and N = (times − ncomp)

(wavelengths) = (51−2)(51) [5], [28]. The resulting contour plot of confidence regions
about the parameter estimates is shown in Fig. 5(a). For comparison, the linear approx-
imation confidence regions calculated from cov(φ) for KAUF, GP, or NUM are shown
in Fig. 5(b). Note that the linear approximation confidence regions are slightly too
small as compared to the likelihood-based confidence regions, which is consistent
with the slight underestimation of σ̂k̂ in Table 2, as measured by the overshoot of
deviation/σ̂k̂ to 1.

In conclusion, the standard error estimates returned by both variable projection
variants are usable as a measure of confidence in the associated parameter estimates,
and allow, e.g., the construction of confidence regions about parameter estimates. The
standard error estimates returned by ALS with line search are so poor as to prohibit

Table 2 Root mean square deviation and standard error of nonlinear parameters

ALS-LS KAUF/GP/NUM

RMS deviation (k̂ − k) k1 0.022 0.022
k2 0.025 0.025

RMS σ̂k̂ k1 0.00033 0.021
k2 0.00048 0.027

RMS (deviation/σ̂k̂) k1 55 1.3
k2 37 1.2
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Fig. 5 For the dataset
depicted in Fig. 4, (a) contour
map of confidence levels 1 − α

as determined by Eq. 25 as rate
constants k1, k2 vary, (b) linear
approximation confidence
regions as found using KAUF,
GP, or NUM for the same
levels as at left. In both (a) and
(b) a triangle marks the rate
constant values used in
simulation, and a circle marks
the globally optimal values
found by KAUF, GP, NUM,
and ALS-LS
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inference regarding the associated parameter estimates. Hence the variable projec-
tion-based algorithms also demonstrate better performance relative to ALS-based
algorithms under the criteria of goodness of standard error estimates.

5.2 Numerical comparison of Fisher information matrices

The functional forms for the FIM are useful in accessing the loss of parameter precision
under KAUF as compared to GP for typical problems. Relation (7) allows standard
error bounds under both algorithms to be numerically compared. This comparison
is of particular interest for estimation problems associated with a SSE surface of the
nonlinear parameters φ with multiple closely spaced global minima.

For fitting Model (1) to the dataset described in Sect. 4 realized with a noise dis-
tribution having width 1 × 10−4 the maximum of the data, we studied the standard
error bounds returned by KAUF and GP using Relation (7). We varied the separa-
tion between rate constants k2 − k1 by letting k1 = 0.5 and varying k2 between 1
and 0.5075. The standard error bounds under KAUF never increased by more than
5 × 10−4 percent in comparison to the bounds under GP, even when the separation
k2−k1 became very small. Hence the decrease in parameter precision under KAUF as
compared to under GP is negligible even for nearly-degenerate instances of Problem
(2). Since KAUF is faster to compute it may therefore be preferred for application.

6 Conclusions

Gradient-based algorithms for separable nonlinear least squares based on alternating
least squares and variable projection were compared for an application in multi-
exponential analysis that is common and important in fitting photophysical kinetic



212 J Glob Optim (2007) 38:201–213

models to time-resolved spectra. The efficiency of the variable projection algorithms
was found to be less sensitive to starting values as compared to the efficiency of algo-
rithms based on alternating least squares. The linear approximation confidence regions
about parameter estimates using the variable projection gradients were furthermore
found to well-approximate likelihood-based confidence regions, while those based on
an alternating least squares gradient did not. Using a new derivation of the Fisher
information matrix under the Golub-Pereyra variable projection gradient, parameter
precision under variable projection techniques was compared numerically. The loss
of precision under the Kaufman approximation as compared to the Golub-Pereya
variable projection functional was found to be acceptable even on nearly-degenerate
problems, so that the faster Kaufman approximation algorithm can be recommended
for application to the problem in photophysical modelling considered here.
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